025-8310-8080
文都服务时间:9:00~22:00

考研信息
考研时间
考研信息
考研学校
考研难度
考研科目
本科考研
考研分数线
课程推荐
百日冲刺营
在职考研
考研密训营
MBA特训班
医学硕士
艺术考研
考研真题
考研政治真题答案
考研英语真题答案
考研数学真题答案
图书资料
英语图书
数学图书
政治图书
专硕图书
您所在的位置: 南京文都考研 > 考研专业知识 > 考研英语 > 2023考研英语同源外刊1月文章:二氧化碳和水就能造出航空燃料?

2023考研英语同源外刊1月文章:二氧化碳和水就能造出航空燃料?

距2021年考研倒计时

2023考研英语同源外刊1月文章:二氧化碳和水就能造出航空燃料?

考研英语阅读的发展,离不了每日依照自身的時间,去看看一定量的英文报纸和杂志期刊。可是,有一些学生很有可能不清楚怎样找这种报刊和杂志期刊的內容。下边,我为2023研究生考试者们,梳理出——2023英语考研同源外刊1月文章内容:二氧化碳和水就能造出航空公司燃料?供学生参照。

2023英语考研同源外刊1月文章内容:二氧化碳和水就能造出航空公司燃料?

A way of combining atmospheric CO₂ and water to make aircraft fuel. MOST PEOPLE who think about such things agree that replacing fossil fuels with renewable electricity, either directly or indirectly, is the best way to decarbonise industry, transport and the heating and cooling of buildings.But there are some holdout areas where this is hard.Cement is one.Aviation is another, because batteries are too heavy and hydrogen (which could be made using renewable electricity) too bulky to do the job easily.Hydrocarbon aviation fuels are thus likely to be around for a while.But such fuels need not be fossil.They might be synthesised from the CO₂exhaust of various industrial processes.And a study just published in Nature, by Aldo Steinfeld of ETH Zurich, a technological university in Switzerland, and his colleagues, shows how they might literally be plucked from thin air.Dr Steinfeld and his team devised and tested a system that, in essence, reimagines the natural process of photosynthesis.Plants take in atmospheric CO₂and water and, with sunlight providing the energy, turn those raw materials into organic molecules.And that is exactly what Dr Steinfeld has done.

一种将空气中的二氧化碳和水结合在一起生产制造飞机场燃料的方式大部分人都允许这一点——立即或间接的用可再生电力工程替代动物化石燃料是工业生产、交通出行及其工程建筑采暖和致冷的渗碳较好方法。但还有一些行业无法保证渗碳。煤炭企业便是这其中之一。航空公司行业是另一个,由于充电电池过重,氢(可以用可再生电力工程生产制造)必须的容积很大,难以解决。因而,氮氧化合物航空公司燃料很有可能会存有一段时间。但这种燃料不一定是动物化石燃料。他们可以从各种各样工业生产全过程排出二氧化碳生成。瑞士苏黎世理工学院的阿尔多·斯坦菲尔德和他的朋友们刚在《自然》杂志期刊上发布的一项科学研究展现,他们是怎样从很稀的空气中获取燃料的。斯坦菲尔德博士和他的精英团队设计方案并检测了一个系统软件,从其本质上说,它可以再次想像植物光合作用的当然全过程。绿色植物消化吸收空气中的二氧化碳和水,并根据太阳给予动能,将这种原料转换为有机分子。这恰好是斯坦菲尔德博士所做的。

The process has three stages.The first absorbs CO₂ and water from the atmosphere using a so-called direct-air-capture device made by Climeworks, a spin-off of ETH founded by two of Dr Steinfeld’s students that made the news recently by opening a demonstration carbon-capture-and-storage system in Iceland.There, however, the CO₂ is reacted with basalt rock to dispose of it. Dr Steinfeld’s system makes use of it.The second stage is the clever bit.It employs concentrated sunlight to heat a material called cerium oxide which, when so heated, reacts with both CO₂ and water.The reaction with CO₂creates carbon monoxide.The one with water creates hydrogen.In both cases the by-product is oxygen, which is vented into the atmosphere.But a mixture of carbon monoxide and hydrogen is a familiar one to industrial chemists.

这一流程分成三个环节。一阶段是运用Climeworks生产制造的名叫“立即捕获气体设备”从空气中消化吸收二氧化碳和水。博士的两学员近期在冰岛展现了“碳捕获和分布式存储”,已变成新闻报道。(Climeworks是ETH的一个支系,ETH是由斯坦菲尔德博士的两个学员建立的。)殊不知,在那里,二氧化碳与石灰岩产生反映,将其转换。斯坦菲尔德博士的系统软件运用了它。二环节是是很有妙趣的。它运用集中化的太阳加温一种称为氧化铈的化学物质,当这些化学物质被加温时,它会与二氧化碳和水产生反映。与二氧化碳的反应造成一氧化碳。存水的造成氡气。在这里二种全过程下,副产物全是o2,氧气被排出到空气中。可是工业生产科学家对一氧化碳和氡气的混合物质并不陌生。

It is called syngas, and is widely used as a raw material to make other things.The third part of the process is therefore to turn the syngas into organic molecules.For the hydrocarbons that make up aviation fuel an industrial chemist would normally turn to what is known as the Fischer-Tropsch process.For their demonstrator, the team chose another route, which led to methanol rather than hydrocarbons.But the general idea is the same.

它被称作合成气,是被普遍用于生产制造别的物品的原材料。因而,该全过程的三环节是将合成气转换为有机分子。针对组成航空公司燃料的氮氧化合物,工业生产科学家通常会选用费托合成的方式。针对她们的示范者,精英团队挑选了另一条线路,那样可以造成工业甲醇而不是氮氧化合物。但整体构思是一样的。

The team’s demonstration rig, which they installed on the roof of ETH’s Machine Laboratory Building, had a typical yield of 32ml of pure methanol per seven-hour day—tiny, but a clear proof of principle.A back-of-the-envelope calculation suggests that substituting the world’s aviation-fuel market entirely in this way would need 45,000km2 of suitably insolated land.

That sounds a lot, but is equivalent to about 0.5% of the area of the Sahara Desert.Air-captured aviation fuel would certainly need its path to market smoothed by appropriate carbon taxes on the fossil variety, and possibly other measures.But Dr Steinfeld’s rig does seem to have demonstrated a credible and potentially scalable way to go about making the stuff.

该精英团队的演试设备安裝在ETH设备试验室大厦的房顶上,其生产量为每7钟头32mL纯工业甲醇,尽管量不大,但这是一个确定的基本原理证实。粗略地测算表明,以这样的方法彻底取代全球航空公司燃料销售市场必须4.5万平方公里的适度日照土地资源。这听起来许多,但仅等同于撒哈拉沙漠总面积的0.5%。根据对动物化石燃料征缴适度的碳税,再再加上很有可能采用的别的对策,空气中捕获的航空公司燃料进到市場的路面毫无疑问会越来越平整。可是斯坦菲尔德博士的机器设备好像早已证实了一种稳定的、潜在性的可扩张产业化的办法来生产制造这种物品。

综上所述是得出的-2023英语考研同源外刊1月文章内容:二氧化碳和水就能造出航空公司燃料?期待对2023研究生考试者们,在英语学科的复习上边有一定的协助!恭祝2023研究生考试成功!

阅读推荐:

2023英语考研同源外刊1月文章内容归纳

2023英语考研同源外刊12月文章内容归纳

2023英语考研同源外刊文章内容归纳


温馨提示:如果你对【 2023考研英语同源外刊1月文章:二氧化碳和水就能造出航空燃料?】问题不是很了解,还有什么疑问,请及时咨询在线老师